A entrega dos exercícios desta lista, todos resolvidos, garante ao aluno cômputo de 15hrs/aula.

1. (Convergência da sequência dos pontos médios) Sejam x_0 e x_1 dois números reais arbitrários com $x_0 < x_1$. Para $n \ge 2$ defina x_n como sendo o ponto médio entre x_{n-1} e x_{n-2} , isto é, $x_n = \frac{1}{2}(x_{n-1} + x_{n-2})$. Mostre que (x_n) converge, e além disso, $\lim x_n = x_0 + \frac{2}{3}(x_1 - x_0) = x_1 - \frac{1}{3}(x_1 - x_0)$.

Sugestão: Mostre primeiro que $x_n = x_1 + \sum_{k=1}^{n-1} (-\frac{1}{2})^k (x_1 - x_0)$ para todo $n \ge 2$, e depois tome o limite quando $n \to \infty$.

- **2.** Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua tal que f(x+y) = f(x)f(y) para quaisquer $x, y \in \mathbb{R}$. Mostre que ou f é a função identicamente nula, ou existe a > 0 de forma que $f(x) = a^x$ para todo $x \in \mathbb{R}$.
- 3. (44^a OBM Nível universitário modificada) Dado 0 < a < 1, determine a função $f : \mathbb{R} \to \mathbb{R}$, contínua em x = 0, tal que f(x) + f(ax) = x para todo $x \in \mathbb{R}$.
- 4. (Teorema do Valor Intermediário de Cauchy) Sejam $f,g:[a,b]\to\mathbb{R}$ contínuas e deriváveis no intervalo (a,b). Mostre que existe $c\in(a,b)$ tal que

$$(f(b) - f(a)) g'(c) = (g(b) - g(a)) f'(c).$$

Mostre que o clássico Teorema do Valor Intermediário para derivadas é um caso particular deste resultado.

5. (Generalização do TVM para integrais) Sejam f e g funções contínuas em $[a,b] \subset \mathbb{R}$. Se g não possuir mudança de sinal em [a,b], mostre que existe $c \in [a,b]$, tal que

$$\int_{a}^{b} (fg)(t)dt = f(c) \int_{a}^{b} g(t)dt.$$

Mostre também que o clássico Teorema do Valor Médio para integrais é um caso particular deste resultado.

6. Sejam $f,g:[a,b]\to\mathbb{R}$ duas funções integráveis. Mostre a Desigualdade de Hölder em L^2 ,

$$\int_{a}^{b} f(t)g(t)dt \le \left(\int_{a}^{b} (f(t))^{2} dt\right)^{\frac{1}{2}} \left(\int_{a}^{b} (g(t))^{2} dt\right)^{\frac{1}{2}}.$$

e use esta desigualdade para provar a Desigualdade de Minkowski em ${\cal L}^2$

$$\left[\int_{a}^{b} [f(t) + g(t)]^{2} dt \right]^{\frac{1}{2}} \leq \left[\int_{a}^{b} [f(t)]^{2} dt \right]^{\frac{1}{2}} + \left[\int_{a}^{b} [g(t)]^{2} dt \right]^{\frac{1}{2}}.$$