9^a Lista de Exercícios de Análise Real

- 1. Seja $f: \mathbb{R} \to \mathbb{R}$ contínua. Mostre que o conjunto $Z_f = \{x \in \mathbb{R}; f(x) = 0\}$ é fechado. Conclua que se $f, g: \mathbb{R} \to \mathbb{R}$ são contínuas então $C = \{x \in \mathbb{R}; f(x) = g(x)\}$ é um conjunto fechado.
- **2.** Dadas $f, g: X \to \mathbb{R}$, defina as funções $f \vee g: X \to \mathbb{R}$ e $f \wedge g: X \to \mathbb{R}$ para cada $x \in X$, por $(f \vee g)(x) = \max\{f(x), g(x)\}$ e $(f \wedge g)(x) = \min\{f(x), g(x)\}$. Mostre que se f e g são contínuas em um ponto $a \in X$ então $(f \vee g)$ e $(f \wedge g)$ também são contínuas em a.
- **3.** Uma função $f: A \to \mathbb{R}$ definida em um aberto $A \subset \mathbb{R}$ é contínua se, e somente se, para todo $c \in \mathbb{R}$, os conjuntos $E[f < c] = \{x \in A; \quad f(x) < c\}$ e $E[f > c] = \{x \in A; \quad f(x) > c\}$ são abertos.
- **4.** Uma função $f: F \to \mathbb{R}$ definida em um fechado $F \subset \mathbb{R}$ é contínua se, e somente se, para todo $c \in \mathbb{R}$, os conjuntos $E[f \le c] = \{x \in A; \quad f(x) \le c\}$ e $E[f \ge c] = \{x \in A; \quad f(x) \ge c\}$ são fechados.
- **5.** Uma função $f: \mathbb{R} \to \mathbb{R}$ é contínua se e somente se $f^{-1}(A)$ é aberto para qualquer aberto $A \subset \mathbb{R}$.
- **6.** Uma função $f: \mathbb{R} \to \mathbb{R}$ é contínua se e somente se $f^{-1}(F)$ é fechado para qualquer fechado $F \subset \mathbb{R}$.
- 7. Dado um conjunto $S \subset \mathbb{R}$ não vazio, defina $f : \mathbb{R} \to \mathbb{R}$ por $f(x) = \inf\{|x s|; s \in S\}$. Prove que $|f(x) f(y)| \le |x y|$ para quaisquer $x, y \in \mathbb{R}$. Conclua que f é (uniformemente) contínua.
- 8. Construa uma bijeção $f:\mathbb{R}\to\mathbb{R}$ que seja descontínua em todo ponto $a\in\mathbb{R}$.
- 9. (Teorema de ponto fixo de Brouwer) Seja $f : [a, b] \to [a, b]$ uma função contínua. Prove que f possui um ponto fixo, isto é, existe $x \in [a, b]$ tal que f(x) = x.
- 10. Se $f, g: X \to \mathbb{R}$ são uniformemente contínuas então f + g é uniformemente contínua.