4^a Lista de exercícios de Álgebra

- 1. Para cada caso abaixo, verifique se a operação * definida sobre $\mathbb{Z} \times \mathbb{Z}$ é associativa, comutativa, possui elemento neutro. Se possuir elemento neutro, determine também os elementos simetrizáveis.
 - a) (a,b)*(c,d) = (ac,0),
 - b) (a,b)*(c,d) = (a+c,b+d),
 - c) (a,b)*(c,d) = (ac,ad+bc),
 - d) (a,b)*(c,d) = (a+c,bd),
 - e) (a, b) * (c, d) = (ac bd, ad + bc).
- **2.** Seja * a operação sobre $\mathbb{Z}^3 = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ dada pela lei (a, b, c) * (d, e, f) = (ad, be, cf). Prove que * é associativa e tem elemento neutro. Determine os elementos simetrizáveis em \mathbb{Z}^3 por esta operação.
- **3.** Verifique se a operação \circ é distributiva com relação a *, no caso em que $(a,b) \circ (c,d) = (ac,ad+bc)$ e (a,b)*(c,d) = (a+c,b+d) em $\mathbb{Z} \times \mathbb{Z}$.
- **4.** Um subconjunto $A \subset E$ é fechado para a operação * de E se (e somente se) $a * b \in A$ para quaisquer $a, b \in A$. Verifique quais dos subconjuntos de \mathbb{Z} são fechados para a operação de adição, e para a operação de multiplicação.
 - a) \mathbb{Z}_+ ,
 - b) \mathbb{Z}_{-} ,
 - c) $P = \{2z; z \in \mathbb{Z}\},\$
 - d) $I = \{2z + 1; z \in \mathbb{Z}\},\$
 - e) $m\mathbb{Z} = \{mz; z \in \mathbb{Z}\}.$
- **5.** Mostre que o conjunto $A = \{\cos \theta + i \sin \theta; \quad \theta \in \mathbb{R}\}$ é um subconjunto de \mathbb{C} fechado para a multiplicação de complexos.
- **6.** Em cada caso, construa uma tabela da operação * definida sobre o conjunto E. Verifique se a operação é comutativa, associativa e se admite elemento neutro.
 - a) $E = \{1, 2, 3, 6\}$ e x * y = mdc(x, y),
 - b) $E = \{1, 3, 9, 27\}$ e x * y = mmc(x, y),
 - c) $E = \mathcal{P}(\{a, b\})$ e $x * y = x \cup y$,
 - d) $E = \mathcal{P}(\{a, b\})$ e $x * y = x \cap y$,
 - e) $E = \{1, i, -1, -i\}$ e $x * y = x \cdot y$.
- 7. Construa uma tabela da operação de composição de funções para o conjunto $\mathcal{F}=\{f_1,f_2,f_3,f_4\},$ onde

$$f_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \quad f_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix},$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \quad f_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}.$$

8. Seja E um conjunto no qual está definida uma operação associativa *. Mostre que se $a,b \in E$ são elementos regulares para a operação *, então a*b e b*a são também regulares para a operação *.

1

- 9. Dado um conjunto não vazio A, considere o conjunto $\mathcal{T}(A)$ das transformações $f:A\to A$, munido da operação de composição de transformações. Prove a afirmação: Se A possui pelo menos dois elementos distintos, então $\mathcal{T}(A)$ é não comutativo.
- **10.** Uma operação * definida em um conjunto não vazio E é dita totalmente não associativa, se $a*(b*c) \neq (a*b)*c$, para quaisquer $a,b,c \in E$. Mostre que * não é comutativa.
- 11. Seja * uma operação associativa sobre um conjunto não vazio E que possui elemento neutro $e \in E$. Mostre que todo elemento simetrizável de E é regular para a operação *.