3^a Lista de exercícios de Álgebra

- **1.** Seja $f: E \to F$ uma aplicação, e A e B dois subconjuntos de E. Mostre que, se $A \subset B$, então $f(A) \subset f(B)$, e dê um contra exemplo para mostrar que não vale a recíproca.
- **2.** Se $f: E \to F$ é uma aplicação, então mostre que $f(A \cup B) = f(A) \cup f(B)$, para quaisquer $A, B \subset E$.
- **3.** Se $f: E \to F$ é uma aplicação, então mostre que $f(A \cap B) \subset f(A) \cap f(B)$, para quaisquer $A, B \in E$. Mostre que se f é injetora, então vale também a inclusão contrária $f(A) \cap f(B) \subset f(A \cap B)$.
- **4.** Se $f: E \to F$ é uma aplicação e $A, B \subset F$ então mostre que $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- **5.** Seja $f: E \to F$ uma aplicação e $A \subset E$. Mostre que $A \subset f^{-1}(f(A))$. Mostre que se f é injetora, então vale também a inclusão contrária $f^{-1}(f(A)) \subset A$.
- **6.** Seja $f: E \to F$ uma aplicação e $B \subset F$. Mostre que $f(f^{-1}(B)) \subset B$. Mostre que se f é sobrejetora então também vale a inclusão contrária $B \subset f(f^{-1}(B))$.
- 7. Se $f: E \to F$ é uma aplicação, e $B \subset F$, então mostre que $f^{-1}(B^C) = (f^{-1}(B))^C$.
- **8.** Seja $f: E \to F$ uma aplicação. Mostre que $f(E) f(A) \subset f(A^C)$, para qualquer $A \subset E$. Mostre que se f é bijetora, então vale também a inclusão contrária $f(A^C) \subset (f(A))^C$.
- **9.** Seja $f:[0,1] \to [0,1]$ uma função contínua, não decrescente, com f(0) = 0 e f(1) = 1. Defina $g:[0,1] \to [0,2]$, dada por g(x) = x + f(x). Mostre que g é bijetora.
- **10.** Considerando as aplicações $f: A \to B$ e $g: B \to C$, mostre que se a composta $h = (g \circ f): A \to C$ for bijetora, então g é sobrejetora e f é injetora. E a recíproca, é verdadeira?
- **11.** Sejam E e F dois conjuntos não vazios e $f: E \to F$ uma aplicação. Suponha que existem aplicações $g, h: F \to E$ tais que $(g \circ f)(x) = x$ para todo $x \in E$ e $(f \circ h)(y) = y$ para todo $y \in F$. Mostre que f é bijetora e além disso, $g = h = f^{-1}$.