1^a Prova de Álgebra Linear

Engenharia Agrícola - 1^o ano - 10/11/2025

N.T.			
Nome:			

Resolva 5 das 6 questões abaixo, e escreva o número da questão que você não resolveu: ______ Se não marcar nenhuma questão, todas as questões serão corrigidas e terão peso $\frac{100}{6} \approx 16,67$.

1. Construir as matrizes $A_{3\times 4}=[a_{ij}]_{3\times 4}$ e $B_{4\times 2}=[b_{ij}]_{4\times 2}$ de forma que

$$a_{ij} = (-1)^i (2i - j)$$
 e $b_{ij} = i^2 - 2ij$.

2. Considerando as matrizes

$$A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \\ 1 & -3 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & -1 \\ 1 & -2 \\ 2 & 3 \end{bmatrix} \qquad e \qquad C = \begin{bmatrix} 2 & 2 \\ -1 & 2 \end{bmatrix},$$

calcule 2A + BC.

- 3. Dê um exemplo de matrizes $A_{3\times3}$ e $B_{3\times3}$ de forma que A e B são não nulas mas AB é a matriz nula.
- 4. Dada a matriz

$$A = \left[\begin{array}{cccc} 1 & 2 & -1 & 2 \\ 1 & 2 & -1 & 1 \\ 1 & 1 & -2 & 1 \end{array} \right],$$

determine a matriz escalonada reduzida por linhas que é linha equivalente a A.

- **5.** Determine a matriz $\begin{bmatrix} x & a \\ y & b \end{bmatrix}$ que satisfaz $\begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix} \cdot \begin{bmatrix} x & a \\ y & b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- 6. Determine a solução do sistema

$$\begin{cases} 2x + y - z = -1 \\ x + 2y - z = -3 \\ -x - y + z = 2 \end{cases}$$

usando a técnica de escalonamento, determinando o posto da matriz ampliada e o posto da matriz dos coeficientes.