2^a Prova de Análise Real

Matemática - 4^o ano - 05/02/2024

1. Mostre que a sequência (x_n) de números reais,

$$\left(1,1+\frac{1}{2},1+\frac{1}{2}+\frac{1}{4},1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8},\ldots\right),$$

definida por $x_n = 1 + \frac{1}{2} + \dots + \frac{1}{2^{n-1}}$ para todo $n \in \mathbb{N}$, converge.

Solução: Modo 1: (Reescrevendo o termo x_n) Notemos que na sequência dada,

$$x_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}},$$

para todo $n \in \mathbb{N}$. Desta forma,

$$2x_n = 2 + 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-2}},$$

e portanto

$$x_n = 2x_n - x_n = 2 - \frac{1}{2^{n-1}}.$$

Como $\lim 2 = 2$ e $\lim \frac{1}{2^{n-1}} = 0$ então $\lim x_n = \lim 2 - \frac{1}{2^{n-1}} = \lim 2 - \lim \frac{1}{2^{n-1}} = 2$. Assim segue que (x_n) é uma sequência convergente com $\lim x_n = 2$.

Modo 2: (Usando resultados conhecidos) Vamos mostrar que (x_n) é uma sequência crescente e limitada (superiormente). Claramente para qualquer $n \in \mathbb{N}$ temos que

$$x_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}}$$

$$< 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^n} = x_{n+1}.$$

Segue então que a sequência (x_n) é crescente. Agora, também para todo $n \in \mathbb{N},$ temos que

$$x_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}}$$

$$= 1 + \frac{1}{2} \left(1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} \right)$$

$$< 1 + \frac{1}{2} \left(1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} \right)$$

$$= 1 + \frac{1}{2} (x_n).$$

Segue que $2x_n - x_n < 2$, donde $x_n < 2$ para todo $n \in \mathbb{N}$. A sequência (x_n) é então limitada superiormente. Segue que (x_n) é crescente e limitada superiormente e portanto convergente.

2. Sejam (x_n) e (y_n) duas sequências de números reais com $\lim x_n = L$ e $\lim y_n = M$. Mostre que $\lim (x_n y_n) = LM$.

Solução: Suponha então $\lim x_n = L$ e $\lim y_n = M$. Para provar que $\lim (x_n y_n) = LM$, seja $\varepsilon > 0$ arbitrário.

Como (x_n) é uma sequência convergente, então é também uma sequência limitada. Desta forma, existe $C \in \mathbb{R}$ com C > 0, de forma que

$$|x_n| < C$$
, para todo $n \in \mathbb{N}$.

Além disso, do fato de que (x_n) converge, então para o número $\frac{\varepsilon}{2(|M|+1)}>0$, existe $n_1\in\mathbb{N}$ de forma que

$$|x_n - L| < \frac{\varepsilon}{2(|M| + 1)}, \quad \text{para todo} \quad n > n_1,$$

e do fato de que (y_n) converge, então para o número $\frac{\varepsilon}{2|C|} > 0$, existe $n_2 \in \mathbb{N}$ de forma que

$$|y_n - M| < \frac{\varepsilon}{2C},$$
 para todo $n > n_2.$

Nestes termos, tomando $n_0 = \max\{n_1, n_2\}$, se $n > n_0$ então $n > n_1$ e $n > n_2$. Assim para todo $n > n_0$, temos que

$$|x_n y_n - LM| = |x_n y_n - x_n M + x_n M - LM|$$

$$\leq |x_n y_n - x_n M| + |x_n M - LM|$$

$$= |x_n||y_n - M| + |M||x_n - L|$$

$$< C \frac{\varepsilon}{2C} + |M| \frac{\varepsilon}{2(|M| + 1)}$$

$$= \frac{\varepsilon}{2} + \left[\frac{|M|}{|M| + 1} \right] \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Segue da definição de convergência de sequências que $\lim x_n y_n = LM$.

3. Se (x_n) é uma sequência de números reais que satisfaz $\lim x_n = \infty$, mostre que $\lim \frac{C}{x_n} = 0$, qualquer que seja $C \in \mathbb{R}$.

Solução: Seja $C \in \mathbb{R}$ arbitrário e suponha que $\lim x_n = \infty$. Para provar que $\lim \frac{C}{x_n} = 0$, tomemos $\varepsilon > 0$ arbitrário.

Como $\lim x_n = \infty$, então para o número $\frac{|C|+1}{\varepsilon}$ existe $n_0 \in \mathbb{N}$ de forma que

$$0 < \frac{|C|+1}{\varepsilon} < x_n,$$
 para todo $n > n_0.$

Desta forma, para todo $n>n_0$ temos que $|\frac{1}{x_n}|=\frac{1}{x_n}<\frac{\varepsilon}{|C|+1}$ e portanto

$$\left|\frac{C}{x_n}\right| = \frac{|C|}{|x_n|} < |C| \left[\frac{\varepsilon}{|C|+1}\right] = \left[\frac{|C|}{|C|+1}\right] \varepsilon < \varepsilon.$$

Segue da definição de convergência de sequências que $\lim \frac{C}{x_n} = 0$.

4. Seja (x_n) uma sequência de números reais. Suponha que as subsequências $(x_1, x_3, x_5, x_7, ...)$ e $(x_2, x_4, x_6, x_8, ...)$ convergem para o mesmo limite L. Mostre que então a sequência (x_n) também converge para L.

Solução: Para provar que (x_n) converge, seja $\varepsilon > 0$ arbitrário.

Como (x_{2n}) é uma sequência convergente para L, então existe $n_1 \in \mathbb{N}$ de forma que

$$|x_{2n} - L| < \varepsilon$$
 para todo $2n > n_1$.

Também, como (x_{2n+1}) é uma sequência que converge para L, então existe $n_2 \in \mathbb{N}$ de forma que

$$|x_{2n+1} - L| < \varepsilon$$
 para todo $2n+1 > n_2$.

Assim, tomando $n_0>\frac12\max\{n_1,n_2\}$, temos que para todo $n>n_0$, então $2n>2n_0>n_1$ e $2n+1>2n_0+1>n_2+1>n_2$ simultaneamente, e portanto

$$|x_n - L| < \varepsilon$$
.

Segue que (x_n) converge para L.

5. Sejam $a, b \in \mathbb{R}$ números reais quaisquer. Mostre que a função afim

$$f: \mathbb{R} \to \mathbb{R}$$
 $x \mapsto f(x) = ax + b$

leva sequência de Cauchy, em sequência de Cauchy. Dito de outra forma, se (x_n) é uma sequência de Cauchy, mostre que a sequência (y_n) dada por $y_n = f(x_n)$ para todo $n \in \mathbb{N}$, também é sequência de Cauchy.

Solução: Seja (x_n) uma sequência de Cauchy, e defina $y_n = f(x_n)$ para todo $n \in \mathbb{N}$, sendo f a função afim dada por f(x) = ax + b com $a, b \in \mathbb{R}$. Para provar que (y_n) é uma sequência de Cauchy, seja $\varepsilon > 0$ arbitrário.

Como (x_n) é uma sequência de Cauchy, então para o número $\frac{\varepsilon}{|a|+1}>0$, existe $n_0\in\mathbb{N}$ de forma que

$$|x_m - x_n| < \frac{\varepsilon}{|a|+1},$$
 para todos $m, n > n_0.$

Desta forma, para todos $m, n > n_0$, temos

$$|y_m - y_n| = |f(x_m) - f(x_n)|$$

$$= |ax_m + b - ax_n - b|$$

$$= |a||x_m - x_n|$$

$$< |a| \left[\frac{\varepsilon}{|a| + 1} \right] = \left[\frac{|a|}{|a| + 1} \right] \varepsilon < \varepsilon.$$

Segue da definição de sequência de Cauchy que (y_n) é uma sequência de Cauchy.

6. Sejam $\sum x_n$ e $\sum y_n$ duas séries convergentes de números reais. Mostre que $\sum (x_n + y_n)$ converge, e além disso,

$$\sum (x_n + y_n) = \sum x_n + \sum y_n.$$

Solução: Como $\sum x_n$ converge, então da definição de convergência de séries, a sequência das somas parciais (X_k) , dada por

$$X_k = x_1 + x_2 + x_3 + \dots + x_k$$

é uma sequência convergente. Seja M este limite, isto é, $\sum x_n = \lim X_k = M$.

Também, como $\sum y_n$ converge, então da definição de convergência de séries, a sequência das somas parciais (Y_k) , dada por

$$Y_k = y_1 + y_2 + y_3 + \dots + y_k$$

é uma sequência convergente. Seja N este limite, isto é, $\sum y_n = \lim Y_k = N$.

Seja (S_k) a sequência das somas parciais de $(x_n + y_n)$, isto é,

$$S_k = (x_1 + y_1) + (x_2 + y_2) + (x_3 + y_3) + \dots + (x_k + y_k).$$

Para mostrar que $\sum (x_n + y_n)$ converge, precisamos mostrar que (S_k) é uma sequência convergente. Para isso, basta ver que para todo $k \in \mathbb{N}$,

$$S_k = (x_1 + y_1) + (x_2 + y_2) + (x_3 + y_3) + \dots + (x_k + y_k)$$

= $(x_1 + x_2 + x_3 + \dots + x_k) + (y_1 + y_2 + y_3 + \dots + y_k) = X_k + Y_k.$

Como (X_k) e (Y_k) são duas sequências convergentes então existe o limite $\lim (X_k + Y_k)$ e além disso,

$$\lim X_k + Y_k = \lim X_k + \lim Y_k.$$

Sendo assim,

$$\lim S_k = \lim (X_k + Y_k) = \lim X_k + \lim Y_k = M + N,$$

provando que (S_k) é uma sequência convergente e portanto $\sum (x_n + y_n)$ é uma série convergente. Além disso,

$$\sum (x_n + y_n) = \lim S_k = \lim X_k + \lim Y_k = \sum x_n + \sum y_n.$$