1^a Lista de exercícios de Análise Real

1. Para quaisquer conjuntos $A, B \in C$, mostre que valem as seguintes propriedades:

a)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
,

b)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
.

2. Dê exemplos para mostrar que não vale a lei do cancelamento para a união e a intersecção de conjuntos, isto é,

a)
$$A \cup B = A \cup C \implies B = C$$
,

b)
$$A \cap B = A \cap C \implies B = C$$
.

3. Mostre as leis de DeMorgan,

a)
$$A - (B \cup C) = (A - B) \cap (A - C)$$
,

b)
$$A - (B \cap C) = (A - B) \cup (A - C)$$
.

4. Mostre as leis distributivas,

a)
$$(A \cap B) - C = (A - C) \cap (B - C)$$
,

b)
$$(A \cup B) - C = (A - C) \cup (B - C)$$
.

5. Mostre que

a)
$$A \cap (B - C) = (A \cap B) - (A \cap C)$$
,

b)
$$A \cup (B - C) \supset (A \cup B) - (A \cup C)$$
,

e dê um exemplo para mostrar que não vale a inclusão contrária em (b).

6. Se
$$A \subset B \subset X$$
 então $B^C \subset A^C$.

7. Se $A, B \subset X$, então mostre que,

a)
$$(A \cup B)^C = A^C \cap B^C$$
,

b)
$$(A \cap B)^C = A^C \cup B^C$$
.

8. Se
$$A \subset X$$
, então mostre que, $A = (A^C)^C$.

9. Sejam X e Y dois conjuntos não vazios, $f: X \to Y$ uma função e $A \subset X$ e $B \subset Y$ dois conjuntos. Mostre que se $A \neq \emptyset$, então obrigatoriamente $f(A) \neq \emptyset$. Dê um contraexemplo em que $B \neq \emptyset$ e no entanto $f^{-1}(B) = \emptyset$.

10. Sejam X e Y dois conjuntos não vazios e $f:X\to Y$ uma função.

i) Se
$$A \subset B \subset X$$
, então $f(A) \subset f(B)$.

- ii) Se $A \subset B \subset Y$, então $f^{-1}(A) \subset f^{-1}(B)$.
- **11.** Sejam X e Y dois conjuntos não vazios, $f: X \to Y$ uma função e $A, B \subset X$. Mostre que $f(A \cup B) = f(A) \cup f(B)$.
- **12.** Sejam X e Y dois conjuntos não vazios, $f: X \to Y$ uma função e $A, B \subset X$. Mostre que $f(A \cap B) \subset f(A) \cap f(B)$. Dê um exemplo para mostrar que a inclusão contrária não ocorre. Mostre que se f é injetora então ocorre a inclusão contrária, $f(A) \cap f(B) \subset f(A \cap B)$.
- 13. Mostre que se $f(A \cap B) = f(A) \cap f(B)$, para todos os subconjuntos $A, B \subset X$, então f é injetora.
- **14.** Sejam X e Y dois conjuntos não vazios, $A, B \subset X$ e $f: X \to Y$ uma função. Mostre que se $A \subset B$, então $f(A) \subset f(B)$. Dê um contra exemplo para mostrar que a recíproca não é verdadeira. Mostre que se f é injetora então vale a recíproca, isto é, se $f(A) \subset f(B)$ então $A \subset B$.
- **15.** Mostre que se $f(A) \subset f(B)$ implicar $A \subset B$ para todos os subconjuntos $A, B \subset X$, então f é injetora.
- **16.** Sejam X e Y dois conjuntos não vazios, $A, B \subset Y$ e $f: X \to Y$ uma função. Mostre que se $A \subset B$, então $f^{-1}(A) \subset f^{-1}(B)$. Dê um contra exemplo para mostrar que a recíproca não é verdadeira. Mostre que se f é sobrejetora então vale a recíproca, isto é, se $f^{-1}(A) \subset f^{-1}(B)$ então $A \subset B$.
- 17. Mostre que se $f^{-1}(A) \subset f^{-1}(B)$ implicar que $A \subset B$, para todos os conjuntos $A, B \subset Y$ então f é sobrejetora.
- **18.** Sejam X e Y dois conjuntos não vazios, $f: X \to Y$ uma função e $A, B \subset Y$. Mostre que: a) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.
- b) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- 19. Sejam X e Y dois conjuntos não vazios, $f: X \to Y$ uma função e $A \subset X$. Mostre que $A \subset f^{-1}(f(A))$. Dê um contra exemplo para mostrar que não vale a inclusão contrária. Mostre que se f é injetora então vale também a inclusão contrária $f^{-1}(f(A)) \subset A$.
- **20.** Mostre que se $A = f^{-1}(f(A))$ para todo subconjunto $A \subset X$, então f é injetora.
- **21.** Sejam X e Y dois conjuntos não vazios, $f: X \to Y$ uma função e $B \subset Y$. Mostre que

 $f(f^{-1}(B)) \subset B$. Dê um contra exemplo para mostrar que não vale a inclusão contrária. Mostre que se f é sobrejetora, então vale também a inclusão contrária $B \subset f(f^{-1}(B))$.

- **22.** Mostre que se $f(f^{-1}(B)) = B$ para todo subconjunto $B \subset Y$, então f é sobrejetora.
- 23. Mostre que a composição de funções é associativa. De outra forma, dadas as funções

$$f: X \to Y$$
, $g: Y \to Z$ e $h: Z \to W$,

mostre que $(h \circ (g \circ f)) = ((h \circ g) \circ f)$.

24. Seja $a \in \mathbb{R}$ com a > 0 e $a \neq 1$, e considere a função

$$f: \mathbb{R} \ \to \ \mathbb{R}$$

$$x \ \mapsto \ f(x) = \frac{a^x - a^{-x}}{2}.$$

Mostre que f é bijetora e obtenha a expressão para a inversa f^{-1} .

- **25.** Sejam $X, Y \in Z$ conjuntos não vazios e $f: X \to Y \in g: Y \to Z$ duas funções e $(g \circ f): X \to Z$ a composta de f com g. Mostre que
 - i) se $(g\circ f)$ é sobrejetora, então g é sobrejetora.
 - ii) se $(g \circ f)$ é injetora, então f é injetora.

Dê um contra exemplo para mostrar que se $(g \circ f)$ é bijetora não necessariamente f e g são bijetoras.

26. Sejam X, Y e Z conjuntos não vazios e $f: X \to Y$ e $g: Y \to Z$ duas funções bijetoras. Então mostre que

$$(g \circ f)^{-1} = (f^{-1} \circ g^{-1}).$$

27. Seja X um conjunto (não vazio) e $f:X\to X$ uma função tal que f(f(x))=x para todo $x\in X$. Mostre que f é bijetora.